Minerals & Gemstone 480x104


Specific Gravity, also known as SG, is a measurement that determines the density of minerals. Two minerals may be the same size, but their weight may be very different. The specific gravity of a mineral determines how heavy it is by its relative weight to water. The specific gravity value is expressed upon how much greater the weight of the mineral is to an equal amount of water. Water has a specific gravity of 1.0. If a mineral has a specific gravity of 2.7, it is 2.7 times heavier than water. Minerals with a specific gravity under 2 are considered light, between 2 and 4.5 average, and greater than 4.5 heavy. Most minerals with a metallic luster are heavy. The specific gravity may slightly vary within a mineral because of impurities present in the minerals structure.

How to use specific gravity as an identification mark

Scientists measure specific gravity with expensive laboratory tools, such as a hydrostatic balance. These tools are not used by regular mineral collectors, and the procedure for testing with them will not be mentioned here. There are other methods to determine specific gravity, such as using water displacement, but this is a complicated procedure that can provide inaccurate results. Instead of actual testing for a specific gravity value, the heft of a specimen often provides sufficient results. It is easy to notice a very light specimen, an average specimen, and a heavy specimen.

How to test using specific gravity

Testing a mineral for a specific gravity value is a complicated procedure. For the layman, it is done by water displacement and requires a beaker and a scale. The weight of the beaker is taken and written down, as well as the weight of the specimen. The beaker is partially filled up with water, and the level of the water is noted. The mineral is put into the beaker with water, and the water level rises. The difference in the amount of water before the specimen was put in and after it was put in is noted. The mineral is taken out, and the water is spilled out. Then the beaker is filled with the amount of water that the specimen displaced and measured. The difference in weight of the beaker when it was empty and the current measurement (the beaker with the displaced water) is the weight of the displaced water. The weight of the displaced water has the same volume as the specimen, but a different mass. The weight of the specimen is divided by the weight of the displaced water, and that number attained is the specific gravity of that specimen.

This test cannot be conducted for an embedded mineral, but only for a single crystal or mass, for obvious reasons.

Advertising Information